Spam E-mail Classification Recurrent Neural Networks for Spam E-mail Classification on an Agglutinative Language
نویسندگان
چکیده
منابع مشابه
A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملSpam Classification Based on E-Mail Path Analysis
Email spam is the most effective form of online advertising. Unlike telephone marketing, email spamming does not require huge human or financial resources investment. Most existing spam filtering techniques concentrate on the emails’ content. However, most spammers obfuscate their emails’ content to circumvent content-based spam filters. An integrated solution for restricting spam emails is nee...
متن کاملVoting-based Classification for E-mail Spam Detection
The problem of spam e-mail has gained a tremendous amount of attention. Although entities tend to use e-mail spam filter applications to filter out received spam e-mails, marketing companies still tend to send unsolicited emails in bulk and users still receive a reasonable amount of spam e-mail despite those filtering applications. This work proposes a new method for classifying emails into spa...
متن کاملDetecting E-mail Spam Using Spam Word Associations
Now-a-days, mailbox management has become a big task. A large proportion of the emails we receive are spam. These unwanted emails clog the inbox and are very ubiquitous. Here, a new technique for spam detection is presented that makes use of clustering and association rules generated by the Apriori algorithm. Vector space notation is used to represent the emails. The results obtained from exper...
متن کاملSpam / Junk E-Mail Filter Technique
Most e-mail readers spend a significant amount of time regularly deleting junk e-mail (spam) messages, which are a part of marketing campaigning efforts of various companies wherein users normally signed in and it also results in increasing volume of storage space and consumes network bandwidth. A challenge, therefore, rests with the developers and improvement of automatic classifiers that can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Intelligent Systems and Applications in Engineering
سال: 2020
ISSN: 2147-6799
DOI: 10.18201/ijisae.2020466316